Sault Ste. Marie Region Conservation Authority Ontario Ministry of the Environment Environment Canada

ST. MARYS RIVER AREA OF CONCERN Bellevue Marine Park Contaminated Sediments Strategy

Summary presentation made to:

Binational Public Advisory Council

April 29, 2008

Team

- Agencies:
 - Sault Ste. Marie Region Conservation Authority
 - Ontario Ministry of the Environment
 - Environment Canada
- Consultants:
 - Kresin Engineering Corporation
 - Genivar Ontario Inc. (formerly MacViro)
 - Shelby Environmental Services.

Purpose

- Develop a contaminated sediments management strategy for the Bellevue Marine Park (BMP).
 - Review and amalgamate all sediment quality and other data relevant to the BMP and identify data gaps.
 - Apply the Canada-Ontario Decision-Making Framework for Contaminated Sediments (January, 2005).
 - Document land ownership and zoning in/near the BMP.

The BMP

- An embayment located along the northern shoreline of the St. Marys River.
- Extends from:
 - Purvis Marine dock in the west; and,
 - Top Sail Island in the east.
- Lies north of Bayfield Dike.
- Estimated area of 1 km².

The BMP

The BMP

- First major depositional zone in the St. Marys River downstream of the industrial sources in Sault Ste. Marie.
- One study estimated approximately 2.2 million cubic metres of sediment have been deposited within the BMP.
- Identified as being moderately impaired in a 2004 Environment Canada review.

The Process

- Review background information interim report on data gaps.
- Summarize physical and chemical characteristics of BMP sediments and water quality (incl. exposure pathways).
- Apply the decision-making framework for contaminated sediments.
- Identify potentially affected land and water lots.
- Present Conclusions and Recommendations.

- Reports reviewed (in addition to Stage 1 and 2 Remedial Action Plan reports and 2004 Remedial Action Plan review report):
 - Milani, D. and L.C. Grapentine. 2006. The Application of BEAST Sediment Quality Guidelines to the St. Marys River Area of Concern.
 - Golder Associates Inc. 2004. "Synthesis of Sediment and Biological Investigations in the St. Marys River Area of Concern."
 - Kilgour, B.W., W.B. Morton and P.B. Kauss. 2001. Sediment and Benthic Invertebrate Community Assessment of the BMP Area in the St. Marys River.
 - Arthur, A. and P.B. Kauss. 2000. Sediment and Benthic Community Assessment of the St. Marys River.
 - Bedard, D. and S. Petro. 1997. Laboratory Sediment Bioassay Report on St. Marys River Sediments 1992 and 1995.
 - Kauss, P. 1996. Preliminary St. Marys River Sediment Survey Data.
 - Hesselberg. R.J. and Y. Hamdy. 1987. Current and Historical Contamination of Sediment in the St. Marys River.

- Selected Conclusions from reports reviewed:
 - Soft and loose sediments near easterly limits of the BMP may limit remedial options.
 - Pulp fibre deposits throughout.
 - Methane flux observed inhibits oil degradation.
 - Foreign material within sediment:
 - Wood chips/fibres (largest proportion).
 - Charcoal.
 - Soot.
 - Iron and copper plates.
 - Coke.

- Selected Conclusions from reports reviewed:
 - Gases escaping from anoxic layers may be toxic to sediment dwelling invertebrates.
 - Observations identify physical characteristics of the sediment in addition to the presence of contaminants as concerns.
 - Disturbance of sediments should be avoided unless part of major clean-up.

- Selected Conclusions from reports reviewed:
 - PAHs and TOC concentrations are among the more important variables affecting benthic invertebrate communities.
 - Sediment TPH concentrations also linked to observed toxicity.
 - Moderately elevated concentrations of contaminants are likely acting together to cause toxicity (eg. PAHs and TPHs).

- Physical Characteristics:
 - Layered substrate, total sediment depths range from 0.6m to 3.3m.
 - Surficial deposits consist of fine silty material, organic matter and vegetation.
 - Silty sediments overlay deeper pulp fibres and wood chips.
 - Contains oil globules and gases.

- Physical Characteristics (cont'd):
 - Ranges from silty-sand to very fine silty-clay.
 - Highest percentage of fines in the AOC.
 - Various sized sediments closer to the shoreline.
 - Relatively unstable due to decomposing wood fibres and gases.

- Chemical Characteristics:
 - Petroleum hydrocarbons.
 - Highest TPH concentrations in AOC (2006).
 - TPH on average higher in 2001 than in 1995.
 - Metals:
 - Concentrations exceed PSQG-LEL and SEL.
 - PAHs:
 - Exceed PSQG-LEL at locations in BMP.

1596 - PROUNCIAL SEDIMENT QUALITY GUIDELINES

LEL - Lowest Effect Level SEL - Severe Effect Level

- Chemical Characteristics:
 - TOC and TKN:
 - Elevated in BMP.
 - Correlations observed between concentrations of TOC and TKN and concentrations of TPH and PAH.
 - Chemicals that Bioaccumulate:
 - Mercury, PCBs, lead detected above PSQG-LEL.
 - Other Contaminants:
 - Arsenic, cyanide, methane, others.

- Sediment Toxicity
 - Toxicity observed in 5 of 6 samples collected in 2002.
 - Varying degrees and extents of toxicity identified in other studies.
 - TPH, PAH and sediment characteristics thought to be causes, among others.
 - Further study required to specifically identify cause of toxicity.

- Benthic Communities
 - Based on 2002 data (2006):
 - No strong evidence of benthic community impairment was observed (compared to reference site).
 - 4 of 6 sample locations in the BMP characterized as equivalent to reference site.
 - In 2004, it was noted that previous studies identified impairment of benthic communities in the BMP.
 - In 2001, improvement in benthic communities was identified (since 1985).

Water Quality and Exposure Pathways

- Water Quality
 - Considering parameters analyzed for in 2002, water quality throughout the AOC appeared homogeneous.
 - Samples from the Algoma Slip were most dissimilar.
- Exposure Pathways
 - Limited specific information in studies reviewed.
 - Ingestion of contaminated sediment.
 - Uptake through absorbing epithelia (e.g. fish gills).

- Developed through the C-O Agreement respecting the Great Lakes Basin.
- Process to determine when contaminants become pollution (characterized by adverse biological effects).
- Based on ecological risk assessment principles.
- Does not include assessment of human health risk.
- Nine step process with 8 decision points.

- Key Guidance Rules:
 - Sediment chemistry data not to be used alone.
 - Remediation decisions based primarily on biology, not chemistry.
 - Reliance on field studies over laboratory tests.
 - If an alternative remediation strategy will cause more harm than leaving contaminants in-place, it should not be implemented.

- Decision Points and responses:
 - 1. Is toxicity or biomagnification possible?
 - Yes to both proceed.
 - 2. Are COPC significantly > reference site?
 - Yes proceed.
 - 3. Is biomagnification a potential concern?
 - Yes.
 - 4. Are sediments toxic?
 - Yes.
 - 5. Are benthic community assessments appropriate, possible and completed?
 - Yes to all.

- Decision Points and responses:
 - 6. Do sediments pose an environmental risk?
 - Involves the application of a weight of evidence (WOE) decision matrix.
 - Least weight to sediment chemistry data and most weight to benthic community data.
 - Yes proceed.

Sample Location	Sediment Chemistry	Toxicity	Benthos Alteration	Biomagnification Potential	Assessment
6981		0		•	Determine reason(s) for benthos alteration <u>and</u> fully assess risk obiomagnification.
6983	•	0	0.		Fully assess risk of biomagnification.
6984	•	0			Determine reason(s) for benthos alteration <u>and</u> fully assess risk of biomagnification.
6986	•	•	0	•	Determine reason(s) for sediment toxicity <u>and</u> fully assess risk of biomagnification.
6991	•	•	0	-	Determine reason(s) for sediment toxicity <u>and</u> fully assess risk of biomagnification.
6992	•	0	0		Fully assess risk of biomagnification.
BMP Site Overall	•		0		Determine reason(s) for sediment toxicity <u>and</u> fully assess risk of biomagnification.

- Decision Points and responses:
 - 7. Does an environmental risk exist?
 - With reference to the WOE decision matrix additional information is required to respond to Decision Point 7.
 - 8. Should deeper sediments be assessed?
 - Available information suggests they are impacted.
 - Additional confirmatory data required to respond to Decision Point 8.

Conclusions

- Sediment toxicity in the BMP has been documented.
- The specific cause of the toxicity is unclear in the information reviewed.
- Appropriate and pristine reference sites are required.
- Additional information required to finalize a management strategy for BMP sediments.

Recommendations

- Address data gaps including Toxicity Identification Evaluations (TIE).
- Specific recommendations for the design of monitoring programs.
- Further develop the understanding of exposure pathways.
- Apply consistent guidelines for each study.

Recommendations

- A detailed assessment (similar to Kilgour and Morton, 2001) should be designed and carried out.
- An assessment of the risk to human health is required.
- Undertake the studies/assessments identified following the WOE assessment.

Thank you for your time and attention.

Questions – Discussion

